مقالات معماری و عمران

مقالات معماری و عمران

سلام.دوست عزیز به وبلاگ خودتان خوش آمدید.
مقالات معماری و عمران

مقالات معماری و عمران

سلام.دوست عزیز به وبلاگ خودتان خوش آمدید.

دیوار برشی

دیوار برشی

با نیروهای جانبی مؤثر بر یک سازه ( در اثر باد یا زلزله ) به طرق مختلف مقابله می شود که اثر زلزله بر ساختمانها از سایر اثرات وارد بر آنها کاملا متفاوت می باشد . ویژگی اثر زلزله در این است که نیروهای ناشی از آن به مراتب شدیدتر و پیچیده تر از سایر نیروهای مؤثر می باشند . عناصر مقاوم در مقابل نیروهای فوق شامل قاب خمشی ، دیوار برشی و یا ترکیبی از آن دو می باشند . استفاده از قاب خمشی به عنوان عنصر مقاوم در مقابل نیروهای جانبی بخصوص اگر نیروهای جانبی در اثر زلزله باشند احتیاج به جزئیات خاصی دارد که شکل پذیری کافی قاب را تأمین نماید .این جزئیات از لحاظ اجرایی غالبا دست و پاگیر بوده و در صورتی می توان از اجرای دقیق آنها مطمئن شد که کیفیت اجرا و نظارت در کارگاه خیلی بالا باشد از لحاظ برتری می توان گفت که دیوار برشی اقتصادی تر از قاب می باشد و تغییر مکانها را کنترل می کند در حالی که برای سازه های بلند قاب به تنهایی نمی تواند در این زمینه جوابگو باشد . حال به ذکر چند نمونه از دیوارهای برشی می پردازیم :

 1-دیوار های برشی فولادی : بعضی مواقع ورقهای فولادی به عنوان دیوارهای برشی بکار می روند . برای جلوگیری از کمانش موضعی چنین دیوارهای برشی فولادی لازم است از تقویت کننده های قائم و افقی استفاده شود.

 2-دیوارهای برشی مرکب : دیوارهای برشی مرکب شامل : ورقها ی تقویت شده فولادی مدفون در بتن مسلح ، خرپاهای ورق فولادی مدفون در داخل دیوار بتن مسلح و دیوارهای مرکب ممکن دیگر ، که تماما با یک قاب فولادی و یا با یک قاب مرکب تؤام هستند می شود .

 3- دیوارهای برشی مصالح بنایی : از دیر زمان در ساختمانهای مصالح بنایی از دیوارهای مصالح بنایی توپر غیر مسلح استفاده می شده است ولی روشن شده است که این دیوارها از نقطه نظر مقاومت در مقابل زلزله ضعف دارند و لذا اکنون به جای آنها از دیوارهای برشی مسلح نظیر دیوارهای با آجر تو خالی و پر شده با دوغاب استفاده می شود . 4-دیوارهای برشی بتن مسلح : نوع دیگری از دیواهای برشی ، دیوارهای برشی بتن مسلح است که در این مقاله به آن می پردازیم. یکی از مطمئن ترین روشها برای مقابله با نیروهای جانبی استفاده از دیوار برشی بتن مسلح است . دیوار برشی به عنوان یک ستون طره بزرگ و مقاوم در برابر نیروهای لرزه ای عمل می کند و یک عضو ضروری برای سازه های بتن مسلح بلند و یک عضو مناسب برای سازه های متوسط و کوتاه می باشد . انواع دیوار برشی بتن مسلح : دو نوع دیوار برشی بتن مسلح وجود دارد :

1-دیوار برشی در جا  :در دیوار برشی در جا به منظور حفظ یکنواختی و پیوستگی میلگرد های دیوار ، به قاب محیطی قلاب می شوند .

2-دیوار برشی پیش ساخته : در دیوار های برشی پیش ساخته یکنواختی و پیوستگی با تهیه کلیه های ذوزنقه شکل در طول لبه های پانل و یا از طریق اتصال پانلها به قاب توسط میخهای فولادی صورت می گیرد . تأثیر شکل دیوار : تعبیه بال در دیوارها برای پایداری و شکل پذیری سازه بسیار مفید می باشد  .  نیروهایی که به دیوارهای برشی وارد می شوند :

 به طور کلی دیوار های برشی تحت نیروهای زیر قرار می گیرند :

1-نیروی برشی متغیر که مقدار آن در پایه حداکثر می باشد .

2-لنگر خمشی متغیر که مقدار آن مجددا در پای دیوار حداکثر است و ایجاد کشش در یک لبه ( لبه نزدیک به نیروها و فشار در لبه متقابل می نماید ) با توجه به امکان عوض شدن جهت نیروی باد یا زلزله در ساختمان ، کشش باید در هر دو لبه دیوار در نظر گرفته شود.

 3-نیروی محوری فشاری ناشی از وزن طبقات که روی دیوار برشی تکیه دارد .

توجه : در صورتی که ارتفاع دیوار برشی کم باشد ، غالبا نیروی برشی حاکم بر طراحی آن خواهد بود لیکن اگر ارتفاع دیوار برشی زیاد باشد لنگر خمشی حاکم بر طراحی آن خواهد بود . به هر حال دیوار باید برای هر دو نیروی فوق کنترل و در مقابل آنها مسلح گردد.

طراحی دیوار برشی در مقابل برش :

اگر Vu تلاش برشی نهایی در مقطع مورد طراحی باشد بر طبق آیین نامه ایران باید Vu=5υchd=φchd(fc)^0.5  تعیین نیروی برشی مقاوم نهایی بتن :

 الف- حالتی که دیوار تحت اثر برش یا تحت اثر تؤام برش و فشار قرار دارد Vc=υcbwd:

 ب- حالتی که دیوار تحت اثر برش و کشش فرار دارد : Vc=υc(1+Nu/(3Ag))bwd (A) در این رابطه کمیت Nu/Ag بر حسب ( N/mm^2 ) می باشد و Nuدر این رابطه منفی می باشد حال اگر محاسبه نیروی برشی مقاوم نهایی بتن ( Vc) با جزئیات بیشتر مورد نظر باشد آنرا برابر با کمترین مقدار به دست آمده از دو رابطه زیر در نظر گرفته می گیریم و Vc=1.65υchd + (Nud)/(5Lw) وVc=(0.3υc+(Lw(0.6υc+0.15Nu/(Lwh)))/(Mu/Vu-Lw/2))hd Nu

 نیروی محوری برای فشار مثبت و برای کشش منفی است چنانچه Mu/Vu-Lw/2 منفی باشد رابطه A بکاربرده نمی شود . نیروی برشی مقاوم نهایی Vc برای کلیه مقاطعی که در فاصله ای کمتر از کوچکترین دو مقدار Lw/2 و hw/2 از پایه دیوار قرار دارند برابر با مقاومت برشی مقطع در کوچکترین این دو مقدار در نظر گرفته می شود .

نیروی برشی مقاوم نهایی آرماتور ها (Vs) از رابطه زیر محاسبه می شود Vs = φsAvfy d/S2 Av  سطح مقطع آرماتور برشی در امتداد برش و در طول فاصله S2 می باشد چنانچه مقدار Av را در اختیار نداشتیم می توان Vs را از رابطه زیر به دست آورد  Vs=Vu-Vc سپس به کمک رابطه فوق Av را به دست می آوریم . برای تأمین برش مقاوم Vsعلاوه بر آرماتور های برش افقی Av آرماتور های برشی قائم نیز باید در دیوار پیش بینی شود آرماتور گذاری در دیوار مطابق زیر انجام می شود : چنانچه Vu=0.0025 فاصله میلگرد های (S2 ) از هم نباید از مقادیر زیر بیشتر باشد : ρn= 3h Lw/5 350سطح مقطع کل بتن در امتداد برش / سطح مقطع آرماتور برشی در امتداد عمود بر برش نباید کمتر از 0.0025 و یا کمتر از مقدار زیر در نظر گرفته شود : ρn=0.0025+0.5(2.5-hw/Lw)( ρh-0.0025) لزومی ندارد  ρn>ρh در نظر گرفته شود . طراحی دیوار برشی در مقابل خمش : چنانچه ارتفاع دیوار برشی بلندتر از دو برابر عمق آن باشد مقاومت خمشی آن مشابه تیری که آرماتور گذاری آن در لبه های آن متمرکز است محاسبه می شود .

مقاومت خمشی Mu یک دیوار برشی مستطیلی نظیر دیوار برشی این چنین محاسبه می شود : Mr=0.5AsφsFyLw(1+Nu/(AsφsFy))(1-C/Lw) در رابطه فوق : Mr مقاومت خمشی نهایی دیوار :Nu  نیروی محوری موجود در مقطع دیوار: As   سطح مقطع کل آرماتور های قائم دیوار Fy  : تنش تسلیم فولاد :  Qs  ضریب تقلیل ظریب فولاد Lw  : طول افقی دیوار مقدار C/Lw از رابطه زیر به دست می آید  C/Lw=(w+α)/(2w+0.85β1) مقدار β 1 از روابط زیر به دست می آید : Fc=55 N/mm^2 β1=0.65، w=As/(Lwh)*(φsFy)/( φcfc) φs=0.85 φc=0.6 a=Nu/(Lw*h*φcfc) h  عرض دیوار : Fc  مقاومت فشاری بتن ابتدا با توجه به آرماتور های قائم حداقل که به علت نیازهای برشی در دیوار تعبیر شده اند ظرفیت خمشی مقطع را به دست می آوریم . همواره باید ظرفیت خمشی بزرگتر یا مساوی نیروی خمشی نهایی دیوار باشد.

 ( Mr>=Mu) چنانچه ظرفیت خمشی کمتر از نیروی خمشی دیوار به دست آید باید یا با کاهش فواصل یا افزایش قطر آرماتور های قائم مقدار As آنقدر افزایش یابد تا خمش بزرگتر از لنگر خمشی مقطع گردد . شکست برشی لغزشی : در شکست برشی لغزشی ، دیوار برشی به طور افقی حرکت می کند برای جلوگیری از این نوع شکست آرماتورهای تسلیح قائم که به طور یکنواختی در دیوار قرار گرفته اند مؤثر خواهد بود و تسلیح قطری نیز می تواند مؤثر باشد . در قسمت زیر انواع مودهای شکست یک دیوار برشی طره ای گفته شده است : الف ـ گسیختگی خمشی ب ـ شکست لغزشی ج ـ شکست برشی د ـ دوران پی دیوارهای برشی با بازشو ها: شکست برشی یک دیوار برشی با بازشو ها ، اگرچه می توان با به کار بردن مقدار زیادی خاموت باعث اتلاف انرژی شد اما نمی توان انتظار شکل پذیری زیادی از آن داشت بنابراین بهتر است در چنین شرایطی از تسلیح قطری استفاده کرد .

 

آسانسورهای برقی

 

 

آسانسورهای برقی

بنام خدا

 

اصول عملکرد:

یک آسانسوربرقی با نیروی محرکةکششی دارای اتاقکی است که ازکابلهای فولادی آویزان است و این کابلها برروی قرقره محرک شیار دارحرکت می کنند.کابلهای فولادی از یک طرف به بالای اتاقک و از طرف دیگر به قاب وزنه تعادل متصل می شوند.وزنه تعادل ازمیزان بار روی موتور الکتریکی به اندازه اختلاف وزن موجود میان اتاقک همراه با  بار و وزنه تعادل یا اصطکاک کم می کند.این اختلاف وزن را ((بار غیر متعادل))می نامند.

وزنه تعادل معمولاً  ۴۰  تا  ۵۰  درصد وزن اتاقک به علاوه بار آن و اصطکاک وزن دارد. اصطکاک معمولاً ۲۰ درصد وزنه تعادل است.

 

اشکال کابل کشی:

   1-کشش تک رشته ای:

این شکل از کابل کشی معمولاً همراه با ماشینهای گیر بکسی به کارمی رود،اماازآن می توا ن برای ماشینهای بدون گیربکس با سرعتهای پایین تر  ۱.۷۵  تا ۲.۵متر بر ثانیه نیز استفاده کرد.در این دو حالت معمولاً زاویة تماس کابل فولادی باقرقرة محرک به ترتیب ۱۴۰  و ۱۸۰  است.

قرقرةمحرک به ندرت از چنان قطری برخوردار است که در فاصلةمیانی مرکز اتاقک و وزنةتعادل قرار گیرد،به همین دلیل استفاده از قرقرة انحراف ضرورت پیدا می کند.

2-کشش دو رشته ای:

چون استفاده از قرقرة انحراف خطر لغزش کابل فولادی را در نتیجة کاهش سطح اصطکاک کابل با قرقرة محرک افزایش می دهد ، می توان از قرقرة دو رشته ای استفاده کرد.از این روش در آسانسورهای پر سرعت وسنگین بار استفاده می شود

3-کابل کشی 2به 1 :

از این روش گاهی به همراه ما شینهای گیربکسی در سرعتهای پایین تر اتاقک یعنی در حدود  ۱.۷۵  تا ۳ متر بر ثانیه  استفاده می شود.در این حالت سرعت اتاقک و وزنةتعادل نصف سرعت محیطی قرقرةمحرک است و این بار روی قرقره را به نصف کاهش می دهد  وامکان استفاده از موتورهای پر سرعت را فراهم می سازد که نسبت به موتورهای کم سرعت ارزانتراند.

4-کابل کشی 3به1:

از این نوع کابل کشی برای آسانسورهای سنگین کالا در مواردی استفاده می شود که باید توان موتوروفشار روی یاتاقانها راکم کرد.

5-کابلهای توازن:

در ساختمانهای بلند بالاتر از ده طبقه،بار کابل فولادی که در حین حرکت اتاقک از آن به وزنة تعادل(و بر عکس)منتقل می شود مقدار قابل توجهی است و با رسیدن اتاقک به بالا، بار کابل سیمی به وزنة تعادل منتقل می گردد.برای توازن و کاهش این پدیده،به قسمت تحتانی اتاقک و وزنة تعادل، کابلهای توازن متصل می گردد. برای جای دادن کابلهای توازن به یک گودال عمیق تر نیاز است.

اتاق ماشین آلات در سطح پایین:

  در صورتی که اتاق ماشین آلات در یک طبقة میانی یا در کف چاه آسانسور واقع شود به کابل سیمی طویلتری احتیاج است ودر این حالت کابل از دور قرقره های بیشتری عبور می کند که این خود به مقاومت  اصطکاکی بالاتر و ضرورت کار نگهداری بیشتر منجر می گردد. اما چنانچه اتاق ماشین آلات در طبقة همکف قرار گیرد، چاه آسانسور از وزن ماشینهای کابل پیچی و تجهیزات کنترل خلاص می شود. موقعیت اتاق ماشین آلات مسئلةنفوذ دال بام و هوابندی را نیز منتفی می سازد.

محرک استونه ای:

در این شکل کابل در جهت حرکت عقربه های ساعت و کابل دیگر در خلاف جهت حرکت عقربه های ساعت به دور یک استوانه  می پیچد، بنابر این زمانی که کابل به دور استوانه می پیچد ، کابل دیگر از دور آن باز می شود ، نقطة ضعف محرک استوانه ای آن است که با افزایش ارتفاع ،استوانة بزرگ و سنگین می شود و بنا بر این استفاده از این سیستم به ارتفاع حداکثر ۳۰ محدود می گردد.

 

کابلهای سیمی :

این نوع ازکابلهای مورد استفاده، کابلهای سیم فولادی با مقاومت کششی بالا هستند و تعداد کابلهای هر آسانسور بین ۴  تا ۱۲ عدد است . قطر کابلها  ۹ تا ۱۹ میلیمتر و ضریب ایمنی آنها    ۱۰ است.

 

موتورهای کابل پیچی: 

درصورتی که نیروی محرکةانتقالی به قرقرةکششی از طریق یک چرخ دندةحلزونی باشد،موتور از «نوع گیربکسی»است. اما چنانچه نیروی محرکه از طریق اتصال مستقیم از موتور به قرقرةکشش منتقل گردد،موتور از«نوع بدون گیر بکس» است. توان موتورهای بدون گیر بکس از۲۲تا  ۸۳کیلو وات متفاوت است،اما موتورهای گیر بکسی کشش از توان۳   تا ۳۰ کیلو وات برخوردارند.

 

موتورهای گیر بکسی تک سرعتة کشش:

این نوع موتور شامل یک چرخدندةحلزونی است و با برق مستقیم یا متناوب کار می کند.زمانی که اتاقک به فاصله کمی از پا گرد طبقات میرسد،ترمز به صورت اتوماتیک عمل می کند تا اتاقک به شکل آرامی متوقف شود.

 

موتورهای گیر بکسی دو سرعتة کشش:

در این حالت از یک موتور با دو سیستم سیم پیچ جداگانه یا از دو موتور جداگانه استفاده می شود .در زمان شروع،موتور با سیم پیچ پر سرعت به کارمی افتدو برای محدود کردن جریان،یک مقاومت بصورت سری به آنها متصل است.شتاب گیری  آرام اتاقک با کاهش تدریجی میدان مقاومت صورت می گیرد.با نزدیک شدن به پا گرد طبقه،موتور یا سیم پیچ پر سرعت از کار می افتدوموتور با سیم پیچ کم سرعت متصل به چوک به کار می افتد.سرعت اتاقک تا رسیدن به فاصله کمی از پا گرد به صورت تدریجی کاهش می یابدودر این زمان جریان برق قطع می شود و ترمز به صورت اتوماتیک اتاقک را به آرامی متوقف می سازد.

موتورهای گیر بکسی ولتاژ متغیر کشش:

در سیستم ولتاژ متغیر مزایایی وجود دارد که با دیگر سیستمها نمی توان به آن دست یافت.شتاب گیری مثبت ومنفی بسیار آرام،این سیستم را نسبت به سیستمهای یک یا دو سرعته برتر می سازد.تجهیزات این سیستم  شامل موتوری با برق متناوب است که برق مستقیم موتور محرک ماشین گیر بکسی را تأمین می‌کند.

 

موتورهای بدون گیر بکس ولتاژ متغیر کشش:

وجود این تجهیزات برای آسانسور های پرسرعتی با سرعت ۱.۷۵ متر بر ثانیه  و بالاتر بسیار مهم است. این تجهیزات بیانگر بهترین روش جدید در برآورنده ساختن شرایط ترافیکی با کارآیی بالا است.

برای شتاب گیری آرام،در مدار میدان ژنراتور از رگولاتور تنظیم کننده ای استفاده می شودکه بازده خروجی ژنراتور را کنترل می کند.یک مقاومت متغیر در مدار میدان به تدریج میزان مقاومت را کاهش و ولتاز ژنراتور را افزایش می دهد تا اتاقک آسانسور باشتاب گیری آرام به سرعت کامل برسد. با ایجاد سرعت کامل، ولتاژ  ژنراتور تا کاهش سرعت اتاقک ثابت باقی  می ماند.برای کاهش سرعت و توقف اتاقک از یک مجموعه کلید القایی استفاده می شود.ترمزها تنها در زمان ثابت بودن اتاقک عمل می کنند.

 

ترمزها:

برای انواع تجهیزات ماشینی آسانسور وجود یک ترمز برقی- مکانیکی با عملکرد ایمنی در زمان قطع برق ضرورت دارد.زمانی که آسانسور در حال حرکت است،کفشکهای ترمز به صورت برقی- مکانیکی از استوانة ترمز فاصله می گیرند،یعنی بر نیروی فنرهای لوله ای یا صفحه ای ترمز در زما ن ثابت بودن اتاقک غلبه می شود. قطع جریان برق سبب به کار افتادن ترمز می شود و بنا براین در موقع  رفتن برق ترمزها ایمنی ایجاد می کنند.

 

اتاق ماشین آلات:

در موارد ممکن،اتاق ماشین آلات را باید در بالای چاه آسانسور قرار داد،،این مکان بالاترین کارایی را ایجاد می کند .این اتاق را باید تهویه کرد و با عایق کردن پایة بتنی ماشین آلات از دیوارها و   کف به کمک صفحات چوب پنبة فشرده ،به مسئلة انتقال صوت توجه نمود.

وجود یک تیر بالابر سقفی درست در بالای ماشین آلات برای نصب یا پیاده کردن تجهیزات ضروری است ودر داخل کف  در بالای پا گرد نیز باید یک دریچة دسترسی ایجاد کرد تا از طریق آن بتوان تجهیزات را در صورت ضرورت جهت تعمیر یا تعویض پایین برد.برای این اتاق باید یک در قفل دار نصب کرد و وجود فضای کافی جهت کنترل کنندها، انتخاب کنندة طبقات و دیگر تجهیزات ضروری است.

دراین اتاق وجود پریز و تجهیزات روشنایی خوب ضرورت داردو استفادة کافی از نور طبیعی روز توصیه میشود.دمای اتاق نباید از۱۰ درجه  کمتر و از  ۴۰ درجه  بیشتر شود و برای این منظور وجود امکانات گر مایش و تهویه ضروری است . برای پرهیز از ایجاد گرد و غبار باید دیوارها،سقف و کف را رنگ کرد،چرا که گرد .

 

 

 

 

 


 

 

سد های پلاستیکی

   سد های پلاستیکی 

مقدمه:

تکنولوژی نسبتاً جدیدی که برای مهار آبهای سطحی به کار گرفته شده است تکنولوژی ساخت سدهای لاستیکی می باشد . قبل از این نوع سدها برای مهار و هدایت آب به سوی زمینهای وسیع و آبروها ، از دریچه های فولادی و تخته های چوبی استفاده می شد که در جلوی دریچه ها قرار می گرفت تا آب با فشار بیشتری جریان داشته باشد . در این کار نیز به نیروی انسانی نیاز بود و اگر در باز کردن این دریچه ها تأخیری روی می داد سیل ایجاد می شد و دریچه را با خود
می   برد                                                                                                                           . 
ایده استفاده از سدهای لاستیکی اولین بار در سال 1950 توسط «ایمبرسون» مطرح شد . در سال 1965 اولین سد لاستیکی بادی در ژاپن برای ذخیره سازی آب به بهره برداری رسید .
هم اکنون در حدود 100 سد لاستیکی در آمریکای شمالی ، بیش از 1000 سد لاستیکی در ژاپن و خاور دور ، و در مجموع 2600 سد در نقاط مختلف جهان به طور موفقیت آمیز در دست بهره برداری میباشند.

کاربرد ها و مزایای سدهای لاستیکی                                           

۱:کنترل سیلابها و تنظیم جریان رودخانه :                                 

این کار نوسط دستگاههای الکترونیکی در اتاق کنترل و به طور خودکار انجام می گیرد . پایی آمدن رقوم سطح آب از یک سطح مشخص به معنای پایان سیلاب است ، که در این صورت دستگاه الکترونیکی کنترل ، دستور افراشتن سد را اعلام می دارد که با این اعلام کمپرسور هوا به کار افتاده و سد را باد میکند .

۲:کنترل رسوب رودخانه :

از آن جا که سکوی بتنی محل استقرار سد لاستیکی ، در کف رودخانه و هم تراز با بستر آن کار گذاشته می شود ، در هنگام خواباندن سد ، شرایط رودخانه مانند شرایط قبل از احداث سد لاستیکی است . این ویژگی باعث می شود که پشت سدهای لاستیکی را رسوب پر نکند ، زیرا در هنگام وقوع سیل که بیشترین بار رسوب گذاری رودخانه است ، سد به صورت اتوماتیک به حالت خوابیده در می آید و رودخانه شرایط طبیعی پیدا می کند .

موارد استفاده از سدهای لاستیکی :

1. کنترل سد و حفاظت ساحلی در برابر فرسایش .
2. نصب بر روی بندها و سدها به منظور افزایش ارتفاع آنها و کمک به تولید برق .
3. کاهش آلودگی آب .
4. افزایش ظرفیت ذخیرة سدها .
5. مسائل تفریحی از قبیل شنا ، قایق رانی ، ...
6. جلوگیری از نفوذ آب شور دریا به هنگام مد به ساحل .
7. ...

مزایای اقتصادی سدهای لاستیکی نسبت به موارد جایگزین:  

از جمله مزایای اقتصادی این سد ها نسبت به موارد جایگزین شده عبارتند از :
1. سدهای لاستیکی به فونداسیون پیچیده ای نیاز ندارند .
2. این سد ها می توانند تا دهانه ای به طول 100 متر اجرا شوند .
3. این سدها به حداقل حفاظت و نگهداری نیاز دارند . قسمت عمدة تعمیرات مربوط به سیستمهای مکانیکی سد می باشد . تعمیر و نگهداری بدنة سد نیز شباهت بسیاری به تعمیر لاستیک اتومبیل دارد و در صورت سوراخ شدن بدنة سد آن را مانند لاستیک اتومبیل پنچر گیری می کنند .
4. انعطاف پذیری سد در مقابل زلزله .
5. نصب و ساختن بسیار سریع .

اجرای سدهای لاستیکی :

سدهای لاستیکی از یک تیوپ هوا که به یک بستر متصل می شود تشکیل شده است ، انواع قدیم سدهای لاستیکی
FABRI DAM نامیده می شد که به در آنها مخلوط آب و هوا برای متورم کردن تیوپ استفاده می شد ، در حال حاضر از سدهایی به نام INFLATABLE DAM استفاده می گردد یعنی سدهایی که قابل باد شدن می باشند .
ساختمان سدهای لاستیکی را می توان متشکل از سه بخش دانست :
1. بدنة سد ( RUBBER DAM BODY )
2. بستر سد و تجهیزات مهار
3. سیستم کنترل و بهره برداری

 

طراحی داخلی چیست؟

طراحی داخلی چیست؟

طراحی داخلی (Interior Design) که به عنوان یک حرفه، یک هنر و یک صنعت در دنیا شناخته شده، بهینه­سازی فضاهای داخلی ساختمان­ها به منظور انجام فعالیت­های روزمره یعنی زندگی و کار است.

بخش اعظم عمر ما در فضاهای داخلی بناها سپری می­شود. این فضاها محیطی را ایجاد می­کنند که پاسخ­گوی نیازهای اساسی ما نظیر نیاز به سرپناه بوده و بسیاری از فعالیت­های ما در آن صورت می­گیرد. همچنین آنچه به یک بنا روح می­بخشد، فضای داخلی آن است. بنابراین می­توان گفت کیفیت فضای داخلی از یک طرف تأثیر مستقیمی بر نحوه انجام فعالیت­های ما در آن دارد و از طرف دیگر نگرش، احوال و شخصیت ما را تحت تأثیر قرار می­دهد. بر این اساس، هدف طراحی داخلی، بهبود عملکرد فیزیکی و روانی فضا برای راحت­سازی زندگی در آن است. فضای معماری بدون طراحی داخلی یا اصلاً قابل استفاده نیست و یا در صورت قابل استفاده بودن، کارآیی لازم و بهینه را نخواهد داشت.

طراحی داخلی زندگی همه آحاد جامعه را تحت تأثیر قرار می­دهد و تأثیرات آن در زندگی به وضوح قابل مشاهده است. از این­رو موضوع طراحی داخلی به هیچ وجه محدود به اقشار مرفه و خانه­های اعیانی نیست. طراحی داخلی می­تواند برای کل جامعه و طبقات کم­درآمد هم مفید باشد. اگر قناعت را اصل اساسی امروز جامعه بدانیم و قصد داشته باشیم امکان زندگی راحت را در فضای 40 یا 60 متری آپارتمان­ها فراهم کنیم، طراحی داخلی یک ضرورت گریزناپذیر خواهد بود. طراحی داخلی می­تواند به ما نشان دهد که در این فضای کوچک چطور و با چه وسایلی باید زندگی کنیم.

از آنجا که طراحی داخلی در ارتباط مستقیم با ویژگی­های روحی ـ روانی انسان قرار دارد، بایستی برای نیل به یک طرح مطلوب، ویژگی­های رفتارهای انسانی در فضاهای داخلی زیستی اعم از عمومی و خصوصی، در طراحی به دقت مورد توجه قرار ­گیرد. از این­رو طراح به هنگام طراحی فضای داخلی با دو مقوله سروکار دارد: کاربرد آن فضا، و احساس و تأثیری که می­خواهد آن فضا بر استفاده­کننده داشته باشد.

طراحی داخلی طیف گوناگونی از عناصر و مؤلفه­ها از قبیل فرم، نور، رنگ، بافت، کف، سقف، دیوار، عناصر کارکردی و تزیینی و مبلمان را در برمی­گیرد. این عناصر ابزارهای کار طراح هستند که همگی باید بطور هماهنگ و متناسب در یک طرح مرتبط و خوشایند قرار گیرند.

طراحی داخلی که در حد واسط میان معماری و طراحی قرار می­گیرد، به همان میزان که شامل جنبه­های کاربردی، ساختاری و فنی می­شود، طراحی تجسمی و جنبه­های بصری و زیبایی­شناسانه را نیز در بر دارد. از این­رو طراحی داخلی اغلب در ردیف هنرهای تجسمی به حساب آمده است و برای موفقیت در آن، بایستی تا حد نسبتاً زیادی با عناصر و اصول طراحی تجسمی و مبادی سواد بصری آشنا بود.

اگرچه طراحی داخلی امروزه به عنوان یک تخصص شناخته می­شود و محدوده بسیار وسیعی را در بر می­گیرد، اما از آنجایی که این رشته در ارتباط مستقیم با فضای داخلی خانه و زندگی روزمره می­باشد، شناخت الفبای طراحی داخلی و تبیین مبانی آن به زبان ساده برای عموم مردم و بویژه زنان خانه­دار، به قابل فهم کردن آن و برخوردی علمی با این پدیده خواهد انجامید و در نهایت تأثیری عمیق بر کیفیت فضاهای زیستی جامعه ما خواهد داشت. از این­رو بنا داریم طی یادداشت­هایی به مباحث مختلف طراحی داخلی بپردازیم و با بهره­گیری از اصول طراحی تجسمی و سواد بصری و نیز با استناد به نمونه­های موفق طراحی داخلی خانه در سطح جهان، دانش و آگاهی افراد خانواده را در این خصوص افزایش دهیم. در این یادداشت­ها سعی خواهیم نمود با ذکر نکات کلیدی و کاربردی در مورد کیفیت فضاهای داخلی خانه، شما را نسبت به محیط و فضای اطرافتان و عناصر موجود در آن حساس­تر کنیم و توانایی­های علمی و کاربردی شما را در زیباسازی محیط خانه و بهبود کیفیت فضاهای آن افزایش دهیم.